## Dimensionality Reduction

Kenneth (Kenny) Joseph





## What is dimensionality reduction?

- We take our big data matrix and reduce it down to a smaller size
- There are a few reasons we might want to use dimensionality reduction. Can you think of any?





## What is dimensionality reduction?

- We take our big data matrix and reduce it down to a smaller size
- There are a few reasons we might want to use dimensionality reduction. Can you think of any?
  - Visualization (why?)
  - To shrink the size of our feature set (why?) efficiency
     To understand and get rid of correlations between our features...
    - find the "intrinsic dimensionality"



## The utility of dimensionality reduction - visualization

|                    | England | N Ireland | Scotland | Wales |
|--------------------|---------|-----------|----------|-------|
| Alcoholic drinks   | 375     | 135       | 458      | 475   |
| Beverages          | 57      | 47        | 53       | 73    |
| Carcase meat       | 245     | 267       | 242      | 227   |
| Cereals            | 1472    | 1494      | 1462     | 1582  |
| Cheese             | 105     | 66        | 103      | 103   |
| Confectionery      | 54      | 41        | 62       | 64    |
| Fats and oils      | 193     | 209       | 184      | 235   |
| Fish               | 147     | 93        | 122      | 160   |
| Fresh fruit        | 1102    | 674       | 957      | 1137  |
| Fresh potatoes     | 720     | 1033      | 566      | 874   |
| Fresh Veg          | 253     | 143       | 171      | 265   |
| Other meat         | 685     | 586       | 750      | 803   |
| Other Veg          | 488     | 355       | 418      | 570   |
| Processed potatoes | 198     | 187       | 220      | 203   |
| Processed Veg      | 360     | 334       | 337      | 365   |
| Soft drinks        | 1374    | 1506      | 1572     | 1256  |
| Sugars             | 156     | 139       | 147      | 175   |



@\_kenny\_joseph

https://setosa.io/ev/principal-component-analysis/

https://s3-us-west-2.amazonaws.com/lab-apps/pix-plot/index.html#MES25713

University at Buffalo Department of Computer Science and Engineering

# The utility of dimensionality reduction – learning about our features







# The utility of dimensionality reduction – improve learning

| Model           | Redmond            | Havel                  | ninjutsu      | graffiti     | capitulate   |
|-----------------|--------------------|------------------------|---------------|--------------|--------------|
| (training time) |                    |                        |               |              |              |
| Collobert (50d) | conyers            | plauen                 | reiki         | cheesecake   | abdicate     |
| (2 months)      | lubbock            | dzerzhinsky            | kohona        | gossip       | accede       |
|                 | keene              | osterreich             | karate        | dioramas     | rearm        |
| Turian (200d)   | McCarthy           | Jewell                 | -             | gunfire      | -            |
| (few weeks)     | Alston             | Arzu                   | -             | emotion      | -            |
|                 | Cousins            | Ovitz                  | -             | impunity     | -            |
| Mnih (100d)     | Podhurst           | Pontiff                | 1.5           | anaesthetics | Mavericks    |
| (7 days)        | Harlang            | Pinochet               | -             | monkeys      | planning     |
|                 | Agarwal            | Rodionov               | -             | Jews         | hesitated    |
| Skip-Phrase     | Redmond Wash.      | Vaclav Havel           | ninja         | spray paint  | capitulation |
| (1000d, 1 day)  | Redmond Washington | president Vaclav Havel | martial arts  | grafitti     | capitulated  |
|                 | Microsoft          | Velvet Revolution      | swordsmanship | taggers      | capitulating |

Table 6: Examples of the closest tokens given various well known models and the Skip-gram model trained on phrases using over 30 billion training words. An empty cell means that the word was not in the vocabulary.

https://proceedings.neurips.cc/paper/2013/file/9aa4 2b31882ec039965f3c4923ce901b-Paper.pdf

@ kenny joseph

### How do we do dimensionality reduction?

- Lots and lots and lots of ways
  - I am going to introduce three:
  - Principle Component Analysis (PCA)
     Singular Value Decomposition (SVD)

  - Uniform Manifold Approximation and Prediction (UMAP)
  - The first two are intimately related (you can use SVD to solve PCA, and vice versa)
  - The last one is neat and a relative newcomer.
    - You do not need to understand the math.





## What is PCA? Explanation 1

The goal of principal component analysis is to identify the most meaningful **basis** to re-express a data set. The hope is that this new basis will filter out the noise and reveal hidden structure.

#### Put another way:

Is there another basis, which is a linear combination of the original basis, that best re-expresses our data set?

From: https://arxiv.org/pdf/1404.1100.pdf



## What is PCA? Explanation 2

An algorithm that aims to **minimize reconstruction error** of the data with a **fixed number of dimensions** (where that number is much smaller than the number of dimensions in the matrix)





#### How does PCA work?



https://www.youtube.com/watch?v=FgakZw6K1QQ&ab\_channel=StatQuestwithJoshStarmer

University at Buffalo Department of Computer Science and Engineering School of Engineering and Applied Sciences

@\_kenny\_joseph

## **Key Points**



#### Will PCA help us on this data? Example 1

Non-lineor





#### Will PCA help us on this data? Example 2

× × ×× ×× ××





#### Will PCA help us on this data? Example 3



Conversity at Buffalo Department of Computer Science and Engineering School of Engineering and Appled Sciences

@\_kenny\_joseph

## What will PC1 be...

 $\sim$ 



## Draw a dataset where PC1 explains maximal variance

### Another visual analysis

#### https://setosa.io/ev/principal-component-analysis/





## PCA vs. SVD

#### PCA is SVD after you have centered the data

Why might you **not** want to center data?
Why might you **want** to center data?

go from sporse -> dense; bad for large dotosets I works slightly better

University at Buffalo Department of Computer Science and Engineering School of Engineering and Applied Sciences

### Code demo

d, the dog and the cat. da I am a dog. He (dog and) cot i on a C d 6 б G University at Buffalo Department of Computer Science and Engineering 19 @\_kenny\_joseph School of Engineering and Applied Sciences